A Review of Low Temperature Combustion Mode of Engine
Abstract
Since the 21st century, people's increasing attention to fuel economy and environmental issues has prompted the engine research community to continuously develop new efficient and clean combustion theories and methods. In terms of combustion technology, many researchers have proposed different new engine combustion methods, such as homogeneous charge compression ignition combustion (HCCI), premixed charge compression combustion (PCCI), and reaction controlled compression ignition (RCCI), which are the three main low-temperature combustion methods. These combustion methods are different from the premixed combustion method of the spark ignition (SI) engine represented by the traditional gasoline engine and the diffusion combustion method of the compression ignition (CI) engine represented by the traditional diesel engine. The flame temperature affects the combustion and emission process of the engine, and realizes the efficient and clean combustion of the engine. This paper first briefly describes the conventional engine combustion method, and then briefly summarizes the comparison between these three low-temperature combustion methods and their respective combustion and emission characteristics as well as advantages and disadvantages, with respect to the conventional combustion method.
Citation: Hao, Q. (2023). A Review of Low Temperature Combustion Mode of Engine. Trends in Renewable Energy, 9(2), 180-191. doi:http://dx.doi.org/10.17737/tre.2023.9.2.00160
Keywords
Full Text:
FULL TEXT (PDF)References
Krishnasamy, A., Gupta, S. K., & Reitz, R. D. (2021). Prospective fuels for diesel low temperature combustion engine applications: A critical review. 22(7), 2071-2106. doi: https://doi.org/10.1177/1468087420960857
Gharehghani, A. (2019). Load limits of an HCCI engine fueled with natural gas, ethanol, and methanol. Fuel, 239, 1001-1014. doi: https://doi.org/10.1016/j.fuel.2018.11.066
Vasudev, A., Mikulski, M., Balakrishnan, P. R., Storm, X., & Hunicz, J. (2022). Thermo-kinetic multi-zone modelling of low temperature combustion engines. Progress in Energy and Combustion Science, 91, 100998. doi: https://doi.org/10.1016/j.pecs.2022.100998
Riyadi, T. W. B., Spraggon, M., Herawan, S. G., Idris, M., Paristiawan, P. A., Putra, N. R., R, M. F., Silambarasan, R., & Veza, I. (2023). Biodiesel for HCCI engine: Prospects and challenges of sustainability biodiesel for energy transition. Results in Engineering, 17, 100916. doi: https://doi.org/10.1016/j.rineng.2023.100916
Jain, A., Singh, A. P., & Agarwal, A. K. (2017). Effect of split fuel injection and EGR on NOx and PM emission reduction in a low temperature combustion (LTC) mode diesel engine. Energy, 122, 249-264. doi: https://doi.org/10.1016/j.energy.2017.01.050
Maurya, R. K., & Akhil, N. (2017). Comparative study of the simulation ability of various recent hydrogen combustion mechanisms in HCCI engines using stochastic reactor model. International Journal of Hydrogen Energy, 42(16), 11911-11925. doi: https://doi.org/10.1016/j.ijhydene.2017.02.155
Djermouni, M., & Ouadha, A. (2023). Thermodynamic analysis of methanol, ammonia, and hydrogen as alternative fuels in HCCI engines. International Journal of Thermofluids, 19, 100372. doi: https://doi.org/10.1016/j.ijft.2023.100372
Kakoee, A., Bakhshan, Y., Aval, S. M., & Gharehghani, A. (2018). An improvement of a lean burning condition of natural gas/diesel RCCI engine with a pre-chamber by using hydrogen. Energy Conversion and Management, 166, 489-499. doi: https://doi.org/10.1016/j.enconman.2018.04.063
Duan, X., Lai, M.-C., Jansons, M., Guo, G., & Liu, J. (2021). A review of controlling strategies of the ignition timing and combustion phase in homogeneous charge compression ignition (HCCI) engine. Fuel, 285, 119142. doi: https://doi.org/10.1016/j.fuel.2020.119142
Noguchi, M., Tanaka, Y., Tanaka, T., & Takeuchi, Y. (1979). A study on gasoline engine combustion by observation of intermediate reactive products during combustion. SAE Transactions, 2816-2828. https://doi.org/10.4271/790840
Najt, P. M., & Foster, D. E. (1983). Compression-ignited homogeneous charge combustion. SAE Transactions, 964-979. https://doi.org/10.4271/830264
An, Y., Jaasim, M., Raman, V., Hernández Pérez, F. E., Sim, J., Chang, J., Im, H. G., & Johansson, B. (2018). Homogeneous charge compression ignition (HCCI) and partially premixed combustion (PPC) in compression ignition engine with low octane gasoline. Energy, 158, 181-191. doi: https://doi.org/10.1016/j.energy.2018.06.057
Mohammed Elbanna, A., Xiaobei, C., Can, Y., Elkelawy, M., Alm-Eldin Bastawissi, H., & Panchal, H. (2022). Fuel reactivity controlled compression ignition engine and potential strategies to extend the engine operating range: A comprehensive review. Energy Conversion and Management: X, 13, 100133. doi: https://doi.org/10.1016/j.ecmx.2021.100133
Turkcan, A., Altinkurt, M. D., Coskun, G., & Canakci, M. (2018). Numerical and experimental investigations of the effects of the second injection timing and alcohol-gasoline fuel blends on combustion and emissions of an HCCI-DI engine. Fuel, 219, 50-61. doi: https://doi.org/10.1016/j.fuel.2018.01.061
Bobi, S., Kashif, M., & Laoonual, Y. (2022). Combustion and emission control strategies for partially-premixed charge compression ignition engines: A review. Fuel, 310, 122272. doi: https://doi.org/10.1016/j.fuel.2021.122272
Taghavifar, H., Nemati, A., & Walther, J. H. (2019). Combustion and exergy analysis of multi-component diesel-DME-methanol blends in HCCI engine. Energy, 187, 115951. doi: https://doi.org/10.1016/j.energy.2019.115951
Sakthivel, R., Ramesh, K., Mohamed Shameer, P., & Purnachandran, R. (2019). Experimental investigation on improvement of storage stability of bio-oil derived from intermediate pyrolysis of Calophyllum inophyllum seed cake. Journal of the Energy Institute, 92(3), 768-782. doi: https://doi.org/10.1016/j.joei.2018.02.006
Agarwal, A. K., Singh, A. P., García, A., & Monsalve-Serrano, J. (2022). Challenges and Opportunities for Application of Reactivity-Controlled Compression Ignition Combustion in Commercially Viable Transport Engines. Progress in Energy and Combustion Science, 93, 101028. doi: https://doi.org/10.1016/j.pecs.2022.101028
Charitha, V., Thirumalini, S., Prasad, M., & Srihari, S. (2019). Investigation on performance and emissions of RCCI dual fuel combustion on diesel - bio diesel in a light duty engine. Renewable Energy, 134, 1081-1088. doi: https://doi.org/10.1016/j.renene.2018.09.048
Geo Varuvel, E. (2023). Effect of premixed hydrogen on the performance and emission of a diesel engine fuelled with prunus amygdalus dulcis oil. Fuel, 341, 127576. doi: https://doi.org/10.1016/j.fuel.2023.127576
Vallinayagam, R., An, Y., S.Vedharaj, Sim, J., Chang, J., & Johansson, B. (2018). Naphtha vs. dieseline – The effect of fuel properties on combustion homogeneity in transition from CI combustion towards HCCI. Fuel, 224, 451-460. doi: https://doi.org/10.1016/j.fuel.2018.03.123
Khandal, S. V., Banapurmath, N. R., & Gaitonde, V. N. (2019). Performance studies on homogeneous charge compression ignition (HCCI) engine powered with alternative fuels. Renewable Energy, 132, 683-693. doi: https://doi.org/10.1016/j.renene.2018.08.035
Singh, A. P., Kumar, V., & Agarwal, A. K. (2020). Evaluation of comparative engine combustion, performance and emission characteristics of low temperature combustion (PCCI and RCCI) modes. Applied Energy, 278, 115644. doi: https://doi.org/10.1016/j.apenergy.2020.115644
Calam, A., Solmaz, H., Yılmaz, E., & İçingür, Y. (2019). Investigation of effect of compression ratio on combustion and exhaust emissions in A HCCI engine. Energy, 168, 1208-1216. doi: https://doi.org/10.1016/j.energy.2018.12.023
Park, H., Shim, E., & Bae, C. (2019). Injection Strategy in Natural Gas–Diesel Dual-Fuel Premixed Charge Compression Ignition Combustion under Low Load Conditions. Engineering, 5(3), 548-557. doi: https://doi.org/10.1016/j.eng.2019.03.005
Elkelawy, M., El Shenawy, E. A., Mohamed, S. A., Elarabi, M. M., & Bastawissi, H. A.-E. (2022). Impacts of using EGR and different DI-fuels on RCCI engine emissions, performance, and combustion characteristics. Energy Conversion and Management: X, 15, 100236. doi: https://doi.org/10.1016/j.ecmx.2022.100236
Shim, E., Park, H., & Bae, C. (2020). Comparisons of advanced combustion technologies (HCCI, PCCI, and dual-fuel PCCI) on engine performance and emission characteristics in a heavy-duty diesel engine. Fuel, 262, 116436. doi: https://doi.org/10.1016/j.fuel.2019.116436
Pan, S., Liu, X., Cai, K., Li, X., Han, W., & Li, B. (2020). Experimental study on combustion and emission characteristics of iso-butanol/diesel and gasoline/diesel RCCI in a heavy-duty engine under low loads. Fuel, 261, 116434. doi: https://doi.org/10.1016/j.fuel.2019.116434
Xu, G., Jia, M., Li, Y., Chang, Y., & Wang, T. (2018). Potential of reactivity controlled compression ignition (RCCI) combustion coupled with variable valve timing (VVT) strategy for meeting Euro 6 emission regulations and high fuel efficiency in a heavy-duty diesel engine. Energy Conversion and Management, 171, 683-698. doi: https://doi.org/10.1016/j.enconman.2018.06.034
Li, X. (2019). An Experimental Investigation on Combustion Process and Emission of RCCI Combustion Mode. Xihua University, Master's Theses.
Salahi, M. M., Esfahanian, V., Gharehghani, A., & Mirsalim, M. (2017). Investigating the reactivity controlled compression ignition (RCCI) combustion strategy in a natural gas/diesel fueled engine with a pre-chamber. Energy Conversion and Management, 132, 40-53. doi: https://doi.org/10.1016/j.enconman.2016.11.019
Li, J., Yang, W., & Zhou, D. (2017). Review on the management of RCCI engines. Renewable and Sustainable Energy Reviews, 69, 65-79. doi: https://doi.org/10.1016/j.rser.2016.11.159
Sattarzadeh, M., Ebrahimi, M., & Jazayeri, S. A. (2022). A detail study of a RCCI engine performance fueled with diesel fuel and natural gas blended with syngas with different compositions. International Journal of Hydrogen Energy, 47(36), 16283-16296. doi: https://doi.org/10.1016/j.ijhydene.2022.03.088
Xu, G., Jia, M., Li, Y., Chang, Y., Liu, H., & Wang, T. (2019). Evaluation of variable compression ratio (VCR) and variable valve timing (VVT) strategies in a heavy-duty diesel engine with reactivity controlled compression ignition (RCCI) combustion under a wide load range. Fuel, 253, 114-128. doi: https://doi.org/10.1016/j.fuel.2019.05.020
Zheng, Z., Xia, M., Liu, H., Shang, R., Ma, G., & Yao, M. (2018). Experimental study on combustion and emissions of n-butanol/biodiesel under both blended fuel mode and dual fuel RCCI mode. Fuel, 226, 240-251. doi: https://doi.org/10.1016/j.fuel.2018.03.151
DOI: http://dx.doi.org/10.17737/tre.2023.9.2.00160
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Qingyang Hao
This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 License.
Copyright @2014-2025 Trends in Renewable Energy (ISSN: 2376-2136, online ISSN: 2376-2144)