Development Status and Outlook of Hydrogen Internal Combustion Engine

Mengfei Liu

Abstract


Hydrogen energy is one of the best energy carriers for achieving carbon peak and carbon neutrality, with the characteristics of high energy and no pollution. The hydrogen internal combustion engine is one of the important forms of hydrogen energy utilization, with the significant advantages of high efficiency, high reliability, low cost and low emissions. In this paper, the characteristics of hydrogen internal combustion engines and hydrogen fuel cells were compared, and the industrialization prospects of hydrogen energy utilization in the future were analyzed. Focusing on the hydrogen internal combustion engine technology system, a comprehensive analysis was conducted on the technical issues and technical progress in hydrogen storage, combustion, NOx emissions, etc. of hydrogen internal combustion engines.

Citation: Liu, M. (2024). Development Status and Outlook of Hydrogen Internal Combustion Engine. Trends in Renewable Energy, 10(3), 257-265. doi:http://dx.doi.org/10.17737/tre.2024.10.3.00176


Keywords


Hydrogen internal combustion engine; Hydrogen storage; Combustion characteristics; Emission

Full Text:

FULL TEXT (PDF)

References


Hosseini, S. E., & Wahid, M. A. (2020). Hydrogen from solar energy, a clean energy carrier from a sustainable source of energy. International Journal of Energy Research, 44(6), 4110-4131. doi:https://doi.org/10.1002/er.4930

Liu, Y., Guo, H., & Ouyang, X. (2021). Development status and future prospects of hydrogen fuel cell technology. Strategic Study of Chinese Academy of Engineering, 23(4), 162-171. doi:https://doi.org/10.15302/J-SSCAE-2021.04.019

Sun, Z., Hong, J., Zhang, T., Sun, B., Yang, B., Lu, L., ... & Wu, K. (2023). Hydrogen engine operation strategies: recent progress, industrialization challenges, and perspectives. International Journal of Hydrogen Energy, 48(1), 366-392. doi:https://doi.org/10.1016/j.ijhydene.2022.09.256

Hosseini, S. E., & Butler, B. (2020). An overview of development and challenges in hydrogen powered vehicles. International journal of green energy, 17(1), 13-37. doi:https://doi.org/10.1080/15435075.2019.1685999

Li Jian, Zhang Lixin, Li Ruiyi, Yang Xiao, & Zhang Ting. (2021). Research progress on high-pressure hydrogen storage vessels. Energy Storage Science and Technology, 10(5), 1835.

Staykov, A., Yamabe, J., & Somerday, B. P. (2014). Effect of hydrogen gas impurities on the hydrogen dissociation on iron surface. International Journal of Quantum Chemistry, 114(10), 626-635.

Sun, B., Bao, L., & Luo, Q. (2021). Technology development and trend of in-cylinder direct injection hydrogen fuel internal combustion engine. Journal of Automotive Safety and Energy Conservation, 12(03):265-278.

Tsujimura, T., & Suzuki, Y. (2023). Development of a large-sized direct injection hydrogen engine for a stationary power generator. International Journal of Hydrogen Energy, 44(22), 11355-11369. doi:https://doi.org/10.1016/j.ijhydene.2018.09.178

Verhelst, S., Turner, J. W. G., Sileghem, L., & Vancoillie, J. (2019). Methanol as a fuel for internal combustion engines. Progress in Energy and Combustion Science, 70, 43-88. doi:https://doi.org/10.1016/j.pecs.2018.10.001

Pani, A., & Burla, V. S. S. U. T. (2020). Formation, Kinetics and Control Strategies of Nox Emission in Hydrogen Fueled IC Engine. Int J Eng Res, 9, IJERTV9IS010081.

Wallner, T., Nande, A. M., & Naber, J. D. (2009). Study of basic injection configurations using a direct-injection hydrogen research engine. SAE International Journal of Engines, 2(1), 1221-1230.

Yang, X., Wang, X., Dong, Q., Ni, Z., Song, J., & Zhou, T. (2022). Experimental study on the two-phase fuel transient injection characteristics of the high-pressure natural gas and diesel co-direct injection engine. Energy, 243, 123114. doi:https://doi.org/10.1016/j.energy.2022.123114

Nakagawa, K., Yamane, K., & Ohira, T. (2012). Potential of large output power, high thermal efficiency, near-zero NOx emission, supercharged, lean-burn, hydrogen-fuelled, direct injection engines. Energy Procedia, 29, 455-462. doi:https://doi.org/10.1016/j.egypro.2012.09.053

Franken, T., Mauss, F., Seidel, L., Gern, M. S., Kauf, M., Matrisciano, A., & Kulzer, A. C. (2020). Gasoline engine performance simulation of water injection and low-pressure exhaust gas recirculation using tabulated chemistry. International Journal of Engine Research, 21(10), 1857-1877. doi:https://doi.org/10.1177/1468087420933124

Lázaro, M. J., Galvez, M. E., Ascaso, S., Suelves, I., Moliner, R., & Pieta, I. (2011). Catalytic technologies for diesel engines exhaust gas cleaning. Catalysis: Principles, Types and Applications: Nova Science Publishers.

Koch, D. T., Sousa, A., & Bertram, D. (2019). H2-Engine operation with EGR achieving high power and high efficiency emission-free combustion (No. 2019-01-2178). SAE Technical Paper.




DOI: http://dx.doi.org/10.17737/tre.2024.10.3.00176

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Mengfei Liu

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 License.
Copyright @2014-2025 Trends in Renewable Energy (ISSN: 2376-2136, online ISSN: 2376-2144)