Renewable Energy Revolution: Transforming Africa’s Energy Landscape through Solar, Wind, and Hydropower
Abstract
This study examines how the plentiful solar, wind, and hydroelectric resources in Africa are transforming the continent's energy landscape. Africa faces significant challenges in achieving energy access and sustainability due to the growth of its population and urbanization. This analysis analyzes the transformational capacity of renewable energy, emphasizing pioneering initiatives like Morocco's Noor Ouarzazate Solar Complex and Kenya's Lake Turkana Wind Project. We examine the economic advantages of decentralized energy systems, such as mini-grids and pay-as-you-go solar solutions, which have empowered millions and invigorated local economies. Progress in hybrid systems and energy storage technologies is essential for improving grid stability and dependability. The success of this revolution depends on strong legislative frameworks, new financial structures, and regional collaboration to address infrastructural deficiencies and regulatory obstacles. This assessment highlights the need for inclusive strategies that include local people and tackle environmental issues related to large-scale projects. Africa is positioned to lead in renewable energy, underscoring the critical need for collaboration among governments, corporate sectors, and foreign partners to facilitate this transition. By using its extensive renewable resources, Africa may attain energy security, economic development, and environmental sustainability, therefore fostering a resilient future.
Citation: Eyime, E., & Ushie, O. (2025). Renewable Energy Revolution: Transforming Africa’s Energy Landscape through Solar, Wind, and Hydropower. Trends in Renewable Energy, 11(2), 155-200. doi:http://dx.doi.org/10.17737/tre.2025.11.2.00189
Keywords
Full Text:
FULL TEXT (PDF)References
International Energy Agency (IEA). (2022). Africa energy outlook 2022. In World Energy Outlook 2022. https://www.iea.org/reports/africa-energy-outlook-2022 (accessed on 10/28/2024)
International Energy Agency (IEA). (2021). World Energy Outlook 2021, IEA, Paris https://www.iea.org/reports/world-energy-outlook-2021 (accessed on 10/30/2024)
International Energy Agency (IEA). (2021). Net Zero by 2050, IEA, Paris https://www.iea.org/reports/net-zero-by-2050 (accessed on 10/30/2024)
International Energy Agency (IEA). (2021). The Role of Critical Minerals in Clean Energy Transitions, IEA, Paris https://www.iea.org/reports/the-role-of-critical-minerals-in-clean-energy-transitions (accessed on 1/10/2025)
Marzouk, O. A. (2024). Expectations for the Role of Hydrogen and Its Derivatives in Different Sectors through Analysis of the Four Energy Scenarios: IEA-STEPS, IEA-NZE, IRENA-PES, and IRENA-1.5°C. Energies, 17(3), 646. doi:https://doi.org/10.3390/en17030646
International Energy Agency. (2022). World Energy Outlook 2022. https://www.iea.org/reports/world-energy-outlook-2022 (accessed on 10/28/2024)
Nwokolo, S. C., Singh, R., Khan, S., Kumar, A., & Luthra, S. (2023). Africa's Path to Net-Zero. Cham: Springer Nature Switzerland; 2023. doi:https://doi.org/10.1007/978-3-031-44514-9
Shammas, M. I. (2024). Mitigating CO2 emissions in African transport networks under various policies and scenarios of Paris Agreement compliance. International Journal of Sustainable Energy, 43(1), 2393403. doi:https://doi.org/10.1080/14786451.2024.2393403
Nwokolo, S.C., Obiwulu, A.U., & Okonkwo, P.C. (2024). Africa’s Propensity for a Net Zero Energy Transition (1st ed.). CRC Press. doi:https://doi.org/10.1201/9781003483175
Oyewo, A. S., Aghahosseini, A., Ram, M., & Breyer, C. (2020). Transition towards decarbonised power systems and its socio-economic impacts in West Africa. Renewable Energy, 154, 1092-1112. doi:https://doi.org/10.1016/j.renene.2020.03.085
Ram, M., Gulagi, A., Aghahosseini, A., Bogdanov, D., & Breyer, C. (2022). Energy transition in megacities towards 100% renewable energy: A case for Delhi. Renewable Energy, 195, 578-589. doi:https://doi.org/10.1016/j.renene.2022.06.073
Oyewo, A. S., Bogdanov, D., Aghahosseini, A., Mensah, T. N. O., & Breyer, C. (2022). Contextualizing the scope, scale, and speed of energy pathways toward sustainable development in Africa. iScience, 25(9). doi:https://doi.org/10.1016/j.isci.2022.104965
Nwokolo, S. C., Obiwulu, A. U., & Ogbulezie, J. C. (2023). Machine learning and analytical model hybridization to assess the impact of climate change on solar PV energy production. Physics and Chemistry of the Earth, Parts A/B/C, 130, 103389. doi:https://doi.org/10.1016/j.pce.2023.103389
Nwokolo, S., Obiwulu, A., Amadi, S., & Ogbulezie, J. (2023). Assessing the Impact of Soiling, Tilt Angle, and Solar Radiation on the Performance of Solar PV Systems. Trends in Renewable Energy, 9(2), 120-136. doi:http://dx.doi.org/10.17737/tre.2023.9.2.00156
Nwokolo, S. C., Singh, R., Khan, S., & Kumar, A. (2025). Chapter 9 - Net zero technology and circular economy. In S. C. Nwokolo, R. Singh, S. Khan, & A. Kumar (Eds.), Technological Pathways for Africa' s Net-Zero Economy (pp. 237-247): Elsevier. doi:https://doi.org/10.1016/B978-0-443-31486-5.00009-4
Nwokolo, S. C., Singh, R., Khan, S., & Kumar, A. (2025). Chapter 10 - Harnessing industry 4.0 for Africa’s net zero economy through technological pathways. In S. C. Nwokolo, R. Singh, S. Khan, & A. Kumar (Eds.), Technological Pathways for Africa' s Net-Zero Economy (pp. 249-282): Elsevier. doi:https://doi.org/10.1016/B978-0-443-31486-5.00010-0
Vartiainen, E., Masson, G., Breyer, C., Moser, D., & Román Medina, E. (2020). Impact of weighted average cost of capital, capital expenditure, and other parameters on future utility-scale PV levelised cost of electricity. Progress in Photovoltaics: Research and Applications, 28(6), 439-453. doi:https://doi.org/10.1002/pip.3189
Nwokolo, S. C., Singh, R., Khan, S., & Kumar, A. (2025). Chapter 11 - Potential technological pathways for Africa's net-zero economy. In S. C. Nwokolo, R. Singh, S. Khan, & A. Kumar (Eds.), Technological Pathways for Africa' s Net-Zero Economy (pp. 283-447): Elsevier. doi: https://doi.org/10.1016/B978-0-443-31486-5.00011-2
Keiner, D., Gulagi, A., & Breyer, C. (2023). Energy demand estimation using a pre-processing macro-economic modelling tool for 21st century transition analyses. Energy, 272, 127199. doi:https://doi.org/10.1016/j.energy.2023.127199
Caldera, U., Gulagi, A., Jayasinghe, N., & Breyer, C. (2023). Looking island wide to overcome Sri Lankaʼs energy crisis while gaining independence from fossil fuel imports. Renewable Energy, 218, 119261. doi:https://doi.org/10.1016/j.renene.2023.119261
Budzianowski, W. M., Nantongo, I., Bamutura, C., Rwema, M., Lyambai, M., Abimana, C., Akumu, E. O., Alokore, Y., Babalola, S. O., Gachuri, A. K. K., Hefney Diab, M. S., Ituze, G., Kiprono, H., Kouakou, G. C., Kukeera, T., Megne, W. B., Muceka, R., Mugumya, A., Mwongereza, J. d. A., Nwadiaru, O. V., & Sow, S. (2018). Business models and innovativeness of potential renewable energy projects in Africa. Renewable Energy, 123, 162-190. doi:https://doi.org/10.1016/j.renene.2018.02.039
IRENA. (2019). Global energy transformation: A roadmap to 2050 (2019 edition), International Renewable Energy Agency, Abu Dhabi. https://www.irena.org/publications/2019/Apr/Global-energy-transformation-A-roadmap-to-2050-2019Edition (accessed on 1/10/2025)
Sweerts, B., Longa, F. D., & van der Zwaan, B. (2019). Financial de-risking to unlock Africa's renewable energy potential. Renewable and Sustainable Energy Reviews, 102, 75-82. doi:https://doi.org/10.1016/j.rser.2018.11.039
Kılkış, Ş. (2015). Exergy transition planning for net-zero districts. Energy, 92, 515-531. doi:https://doi.org/10.1016/j.energy.2015.02.009
Filimão Sitoe, A., Hoguane, A. M., & Haddout, S. (2023). The ocean as a source of renewable energy in sub-Saharan Africa: sources, potential, sustainability and challenges. International Journal of Sustainable Energy, 42(1), 436–460. doi:https://doi.org/10.1080/14786451.2023.2204378
Keiner, D., Gulagi, A., & Breyer, C. (2023). Energy demand estimation using a pre-processing macro-economic modelling tool for 21st century transition analyses. Energy, 272, 127199. doi:https://doi.org/10.1016/j.energy.2023.127199
Ohunakin, O. S., Adaramola, M. S., Oyewola, O. M., Matthew, O. J., & Fagbenle, R. O. (2015). The effect of climate change on solar radiation in Nigeria. Solar Energy, 116, 272-286. doi:https://doi.org/10.1016/j.solener.2015.03.027
Bogdanov, D., Ram, M., Aghahosseini, A., Gulagi, A., Oyewo, A. S., Child, M., Caldera, U., Sadovskaia, K., Farfan, J., De Souza Noel Simas Barbosa, L., Fasihi, M., Khalili, S., Traber, T., & Breyer, C. (2021). Low-cost renewable electricity as the key driver of the global energy transition towards sustainability. Energy, 227, 120467. doi:https://doi.org/10.1016/j.energy.2021.120467
Gulagi, A., Pathak, S., Bogdanov, D., & Breyer, C. (2021). Renewable Energy Transition for the Himalayan Countries Nepal and Bhutan: Pathways Towards Reliable, Affordable and Sustainable Energy for All. IEEE Access, 9, 84520-84544. doi:https://doi.org/10.1109/ACCESS.2021.3087204
Ramshani, M., Li, X., Khojandi, A., & Omitaomu, O. (2020). An agent-based approach to study the diffusion rate and the effect of policies on joint placement of photovoltaic panels and green roof under climate change uncertainty. Applied Energy, 261, 114402. doi:https://doi.org/10.1016/j.apenergy.2019.114402
Galimova, T., Ram, M., & Breyer, C. (2022). Mitigation of air pollution and corresponding impacts during a global energy transition towards 100% renewable energy system by 2050. Energy Reports, 8, 14124-14143. doi:https://doi.org/10.1016/j.egyr.2022.10.343
International Energy Agency (IEA). (2020). World Energy Model Documentation 2020 Version. https://iea.blob.core.windows.net/assets/fa87681d-73bd-4719-b1e5-69670512b614/WEM_Documentation_WEO2020.pdf (accessed on 11/14/2024)
Jacobson, M. Z., Delucchi, M. A., Cameron, M. A., Coughlin, S. J., Hay, C. A., Manogaran, I. P., Shu, Y., & von Krauland, A.-K. (2019). Impacts of Green New Deal Energy Plans on Grid Stability, Costs, Jobs, Health, and Climate in 143 Countries. One Earth, 1(4), 449-463. doi:https://doi.org/10.1016/j.oneear.2019.12.003
Nwokolo, S. C., Meyer, E. L., & Ahia, C. C. (2023). Credible pathways to catching up with climate goals in Nigeria. Climate, 11(9), 196. doi:https://doi.org/10.3390/cli11090196
Nwokolo, S., Eyime, E., Obiwulu, A., & Ogbulezie, J. (2024). Africa's Path to Sustainability: Harnessing Technology, Policy, and Collaboration. Trends in Renewable Energy, 10(1), 98-131. doi:http://dx.doi.org/10.17737/tre.2024.10.1.00166
Nwokolo, S., Eyime, E., Obiwulu, A., & Ogbulezie, J. (2023). Exploring Cutting-Edge Approaches to Reduce Africa's Carbon Footprint through Innovative Technology Dissemination. Trends in Renewable Energy, 10(1), 1-29. doi:http://dx.doi.org/10.17737/tre.2024.10.1.00163
International Energy Agency (IEA). (2021), The Role of Critical Minerals in Clean Energy Transitions, IEA, Paris https://www.iea.org/reports/the-role-of-critical-minerals-in-clean-energy-transitions (accessed on 11/14/2024)
Islam, M. M., Sohag, K., Hammoudeh, S., Mariev, O., & Samargandi, N. (2022). Minerals import demands and clean energy transitions: A disaggregated analysis. Energy Economics, 113, 106205. doi:https://doi.org/10.1016/j.eneco.2022.106205
Caldera, U., & Breyer, C. (2020). Strengthening the global water supply through a decarbonised global desalination sector and improved irrigation systems. Energy, 200, 117507. doi:https://doi.org/10.1016/j.energy.2020.117507
De Angelis, P., Tuninetti, M., Bergamasco, L., Calianno, L., Asinari, P., Laio, F., & Fasano, M. (2021). Data-driven appraisal of renewable energy potentials for sustainable freshwater production in Africa. Renewable and Sustainable Energy Reviews, 149, 111414. doi:https://doi.org/10.1016/j.rser.2021.111414
Gulagi, A., Ram, M., Bogdanov, D., Sarin, S., Mensah, T. N. O., & Breyer, C. (2022). The role of renewables for rapid transitioning of the power sector across states in India. Nature Communications, 13(1), 5499. doi:https://doi.org/10.1038/s41467-022-33048-8
Bolinger, M., & Bolinger, G. (2022). Land Requirements for Utility-Scale PV: An Empirical Update on Power and Energy Density. IEEE Journal of Photovoltaics, 12(2), 589-594. doi:https://doi.org/10.1109/JPHOTOV.2021.3136805
Renné, D. S. (2022). Progress, opportunities and challenges of achieving net-zero emissions and 100% renewables. Solar Compass, 1, 100007. doi:https://doi.org/10.1016/j.solcom.2022.100007
Breyer, C., Khalili, S., Bogdanov, D., Ram, M., Oyewo, A. S., Aghahosseini, A., Gulagi, A., Solomon, A. A., Keiner, D., Lopez, G., Østergaard, P. A., Lund, H., Mathiesen, B. V., Jacobson, M. Z., Victoria, M., Teske, S., Pregger, T., Fthenakis, V., Raugei, M., Holttinen, H., Bardi, U., Hoekstra, A., & Sovacool, B. K. (2022). On the History and Future of 100% Renewable Energy Systems Research. IEEE Access, 10, 78176-78218. doi:https://doi.org/10.1109/ACCESS.2022.3193402
Ram, M., Bogdanov, D., Aghahosseini, A., Gulagi, A., Oyewo, A. S., Odai Mensah, T. N., Child, M., Caldera, U., Sadovskaia, K., Barbosa, L. D. S. N. S., Fasihi, M., Khalili, S., Traber, T., & Breyer, C. (2022). Global energy transition to 100% renewables by 2050: Not fiction, but much needed impetus for developing economies to leapfrog into a sustainable future. Energy, 246, 123419. doi:https://doi.org/10.1016/j.energy.2022.123419
Keiner, D., Salcedo-Puerto, O., Immonen, E., van Sark, W. G. J. H. M., Nizam, Y., Shadiya, F., Duval, J., Delahaye, T., Gulagi, A., & Breyer, C. (2022). Powering an island energy system by offshore floating technologies towards 100% renewables: A case for the Maldives. Applied Energy, 308, 118360. doi:https://doi.org/10.1016/j.apenergy.2021.118360
IRENA. (2023). World Energy Transitions Outlook 2023: 1.5°C Pathway, Volume 1, International Renewable Energy Agency, Abu Dhabi. https://www.irena.org/Publications/2023/Jun/World-Energy-Transitions-Outlook-2023 (accessed on 1/10/2025)
IEA. (2022). Global EV Outlook 2022, IEA, Paris https://www.iea.org/reports/global-ev-outlook-2022 (accessed on 1/10/2025)
Galeazzi, C., Steinbuks, J., & Cust, J. (2020). Africa’s Resource Export Opportunities and the Global Energy Transition. https://documents1.worldbank.org/curated/en/431621608028194772/pdf/Africa-s-Resource-Export-Opportunities-and-the-Global-Energy-Transition.pdf (accessed on 1/10/2025)
World Bank Group. (2021). The World Bank Annual Report 2021: From Crisis to Green, Resilient, and Inclusive Recovery. http://documents.worldbank.org/curated/en/120541633011500775/The-World-Bank-Annual-Report-2021-From-Crisis-to-Green-Resilient-and-Inclusive-Recovery (accessed on 1/10/2025)
Eyre, N. (2021). From using heat to using work: reconceptualising the zero carbon energy transition. Energy Efficiency, 14(7), 77. doi:https://doi.org/10.1007/s12053-021-09982-9
International Renewable Energy Agency (IRNEA). (2022). Renewable Power Generation Costs in 2021. https://www.irena.org/publications/2022/Jul/Renewable-Power-Generation-Costs-in-2021 (accessed on 10/28/2024)
Yolcan, O. O. (2023). World energy outlook and state of renewable energy: 10-Year evaluation. Innovation and Green Development, 2(4), 100070. doi:https://doi.org/10.1016/j.igd.2023.100070
Liang, Y., Kleijn, R., & van der Voet, E. (2023). Increase in demand for critical materials under IEA Net-Zero emission by 2050 scenario. Applied Energy, 346, 121400. doi:https://doi.org/10.1016/j.apenergy.2023.121400
Nwokolo, S. C. (2017). A comprehensive review of empirical models for estimating global solar radiation in Africa. Renewable and Sustainable Energy Reviews, 78, 955-995. doi:https://doi.org/10.1016/j.rser.2017.04.101
Nwokolo, S. C., & Ogbulezie, J. C. (2018). A qualitative review of empirical models for estimating diffuse solar radiation from experimental data in Africa. Renewable and Sustainable Energy Reviews, 92, 353-393. doi:https://doi.org/10.1016/j.rser.2018.04.118
Nwokolo, S. C., & Ogbulezie, J. C. (2018). A quantitative review and classification of empirical models for predicting global solar radiation in West Africa. Beni-Suef University Journal of Basic and Applied Sciences, 7(4), 367-396. doi:https://doi.org/10.1016/j.bjbas.2017.05.001
Nwokolo, S. C., & Otse, C. (2019). Impact of Sunshine Duration and Clearness Index on Diffuse Solar Radiation Estimation in Mountainous Climate. Trends in Renewable Energy, 5(3), 307-332. doi:http://dx.doi.org/10.17737/tre.2019.5.3.00107
Nwokolo, S. C., & Ogbulezie, J. C. (2017). A critical review of theoretical models for estimating global so-lar radiation between 2012-2016 in Nigeria. International Journal of Physical Research, 5(2), 60-78. doi:https://doi.org/10.14419/ijpr.v5i2.8160
Ituen, E. E., Esen, N. U., Nwokolo, S. C., & Udo, E. G. (2012). Prediction of global solar radiation using relative humidity, maximum temperature and sunshine hours in Uyo, in the Niger Delta Region, Nigeria. Advances in Applied Science Research, 3(4), 1923-1937.
Amadi, S., Dike, T., & Nwokolo, S. (2020). Global Solar Radiation Characteristics at Calabar and Port Harcourt Cities in Nigeria. Trends in Renewable Energy, 6(2), 111-130. doi:http://dx.doi.org/10.17737/tre.2020.6.2.00114
Obiwulu, A. U., Erusiafe, N., Olopade, M. A., & Nwokolo, S. C. (2020). Modeling and optimization of back temperature models of mono-crystalline silicon modules with special focus on the effect of meteorological and geographical parameters on PV performance. Renewable Energy, 154, 404-431. doi:https://doi.org/10.1016/j.renene.2020.02.103
Obiwulu, A. U., Erusiafe, N., Olopade, M. A., & Nwokolo, S. C. (2022). Modeling and estimation of the optimal tilt angle, maximum incident solar radiation, and global radiation index of the photovoltaic system. Heliyon, 8(6). doi:https://doi.org/10.1016/j.heliyon.2022.e09598
Obiwulu, A. U., Chendo, M. A. C., Erusiafe, N., & Nwokolo, S. C. (2020). Implicit meteorological parameter-based empirical models for estimating back temperature solar modules under varying tilt-angles in Lagos, Nigeria. Renewable Energy, 145, 442-457. doi:https://doi.org/10.1016/j.renene.2019.05.136
Nwokolo, S. C., Singh, R., Khan, S., Kumar, A., & Luthra, S. (2023). Africa’s Awakening to Climate Action. In Africa's Path to Net-Zero: Exploring Scenarios for a Sustainable Energy Transition (pp. 299-310). Cham: Springer Nature Switzerland. doi:https://doi.org/10.1007/978-3-031-44514-9_9
Hassan, Q., Viktor, P., J. Al-Musawi, T., Mahmood Ali, B., Algburi, S., Alzoubi, H. M., . . . Jaszczur, M. (2024). The renewable energy role in the global energy Transformations. Renewable Energy Focus, 48, 100545. doi:https://doi.org/10.1016/j.ref.2024.100545
Hassan, M. A., Bailek, N., Bouchouicha, K., & Nwokolo, S. C. (2021). Ultra-short-term exogenous forecasting of photovoltaic power production using genetically optimized non-linear auto-regressive recurrent neural networks. Renewable Energy, 171, 191-209. doi:https://doi.org/10.1016/j.renene.2021.02.103
Nwokolo, S. C., Obiwulu, A. U., Ogbulezie, J. C., & Amadi, S. O. (2022). Hybridization of statistical machine learning and numerical models for improving beam, diffuse and global solar radiation prediction. Cleaner Engineering and Technology, 9, 100529. doi:https://doi.org/10.1016/j.clet.2022.100529
Nwokolo, S. C., Amadi, S. O., Obiwulu, A. U., Ogbulezie, J. C., & Eyibio, E. E. (2022). Prediction of global solar radiation potential for sustainable and cleaner energy generation using improved Angstrom-Prescott and Gumbel probabilistic models. Cleaner Engineering and Technology, 6, 100416. doi:https://doi.org/10.1016/j.clet.2022.100416
Hassan, M. A., Bailek, N., Bouchouicha, K., Ibrahim, A., Jamil, B., Kuriqi, A., ... & El-kenawy, E. S. M. (2022). Evaluation of energy extraction of PV systems affected by environmental factors under real outdoor conditions. Theoretical and Applied Climatology, 150(1), 715-729. doi:https://doi.org/10.1007/s00704-022-04166-6
Brown, T. W., Bischof-Niemz, T., Blok, K., Breyer, C., Lund, H., & Mathiesen, B. V. (2018). Response to ‘Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems’. Renewable and Sustainable Energy Reviews, 92, 834-847. doi:https://doi.org/10.1016/j.rser.2018.04.113
Mutombo, N. M.-A., & Numbi, B. P. (2019). Assessment of renewable energy potential in Kwazulu-Natal province, South Africa. Energy Reports, 5, 874-881. doi:https://doi.org/10.1016/j.egyr.2019.07.003
Winkler, B., Lemke, S., Ritter, J., & Lewandowski, I. (2017). Integrated assessment of renewable energy potential: Approach and application in rural South Africa. Environmental Innovation and Societal Transitions, 24, 17-31. doi:https://doi.org/10.1016/j.eist.2016.10.002
Duah, N. T., & Asamoah, P. K. (2018). Renewable Energy in Africa; Potential, Impact and The Way Forward. ELEKTRIKA- Journal of Electrical Engineering, 17(1), 16–20. doi:https://doi.org/10.11113/elektrika.v17n1.47
IEA (2021), Global EV Outlook 2021, IEA, Paris https://www.iea.org/reports/global-ev-outlook-2021 (accessed on 1/10/2025)
Nwokolo, S. C., Ogbulezie, J. C., & Ushie, O. J. (2023). A multi-model ensemble-based CMIP6 assessment of future solar radiation and PV potential under various climate warming scenarios. Optik, 285, 170956. doi:https://doi.org/10.1016/j.ijleo.2023.170956
Agbor, M. E., Udo, S. O., Ewona, I. O., Nwokolo, S. C., Ogbulezie, J. C., & Amadi, S. O. (2023). Potential impacts of climate change on global solar radiation and PV output using the CMIP6 model in West Africa. Cleaner Engineering and Technology, 13, 100630. doi:https://doi.org/10.1016/j.clet.2023.100630
Agbor, M., Udo, S., Ewona, I., Nwokolo, S., Ogbulezie, J., Amadi, S., & Billy, U. (2023). Effects of Angstrom-Prescott and Hargreaves-Samani Coefficients on Climate Forcing and Solar PV Technology Selection in West Africa. Trends in Renewable Energy, 9(1), 78-106. doi:http://dx.doi.org/10.17737/tre.2023.9.1.00150
Nwokolo, S. C., Singh, R., Khan, S., Kumar, A., & Luthra, S. (2023). Influencing the Scale of Africa’s Energy Transition. In Africa's Path to Net-Zero: Exploring Scenarios for a Sustainable Energy Transition (pp. 75-91). Cham: Springer Nature Switzerland. doi:https://doi.org/10.1007/978-3-031-44514-9_4
Adun, H., Ampah, J. D., & Dagbasi, M. (2024). Transitioning Toward a Zero-Emission Electricity Sector in a Net-Zero Pathway for Africa Delivers Contrasting Energy, Economic and Sustainability Synergies Across the Region. Environmental Science & Technology, 58(35), 15522-15538. doi:https://doi.org/10.1021/acs.est.4c00082
Nwokolo, S. C., Eyime, E. E., Obiwulu, A. U., Meyer, E. L., Ahia, C. C., Ogbulezie, J. C., & Proutsos, N. (2024). A multi-model approach based on CARIMA-SARIMA-GPM for assessing the impacts of climate change on concentrated photovoltaic (CPV) potential. Physics and Chemistry of the Earth, Parts A/B/C, 134, 103560. doi:https://doi.org/10.1016/j.pce.2024.103560
Msimango, N., Orffer, C., & Inglesi-Lotz, R. (2023). South Africa's energy policy: Prioritizing competition and climate change for decarbonisation. Energy policy, 183, 113815. doi:https://doi.org/10.1016/j.enpol.2023.113815
Oyewo, A. S., Sterl, S., Khalili, S., & Breyer, C. (2023). Highly renewable energy systems in Africa: Rationale, research, and recommendations. Joule, 7(7), 1437-1470. doi:https://doi.org/10.1016/j.joule.2023.06.004
Proutsos, N., Tigkas, D., Tsevreni, I., Alexandris, S. G., Solomou, A. D., Bourletsikas, A., ... & Nwokolo, S. C. (2023). A thorough evaluation of 127 potential evapotranspiration models in two mediterranean urban green sites. Remote Sensing, 15(14), 3680. doi:https://doi.org/10.3390/rs15143680
Hanto, J., Schroth, A., Krawielicki, L., Oei, P.-Y., & Burton, J. (2022). South Africa's energy transition – Unraveling its political economy. Energy for Sustainable Development, 69, 164-178. doi:https://doi.org/10.1016/j.esd.2022.06.006
Nwokolo, S. C., Singh, R., Khan, S., Kumar, A., & Luthra, S. (2023). Decarbonizing Hard-to-Abate Sectors in Africa. In Africa's Path to Net-Zero: Exploring Scenarios for a Sustainable Energy Transition (pp. 211-236). Cham: Springer Nature Switzerland. doi:https://doi.org/10.1007/978-3-031-44514-9_6
Nwokolo, S. C., Singh, R., Khan, S., Kumar, A., & Luthra, S. (2023). Introduction: Africa’s Net Zero Transition. In Africa's Path to Net-Zero: Exploring Scenarios for a Sustainable Energy Transition (pp. 1-13). Cham: Springer Nature Switzerland. doi:https://doi.org/10.1007/978-3-031-44514-9_1
Houston, L. J. H. (2024). Climate action and the pursuit of environmental sustainability in Africa: An analysis of Africa's involvement in COP26 discussions. In Human Rights and the Environment in Africa (pp. 375-395). Routledge.
Nwokolo, S. C., Singh, R., Khan, S., Kumar, A., & Luthra, S. (2023). Global Investment and Development in Africa. In Africa's Path to Net-Zero: Exploring Scenarios for a Sustainable Energy Transition (pp. 15-58). Cham: Springer Nature Switzerland. doi:https://doi.org/10.1007/978-3-031-44514-9_2
Ibrahim, I. D., Hamam, Y., Alayli, Y., Jamiru, T., Sadiku, E. R., Kupolati, W. K., Ndambuki, J. M., & Eze, A. A. (2021). A review on Africa energy supply through renewable energy production: Nigeria, Cameroon, Ghana and South Africa as a case study. Energy Strategy Reviews, 38, 100740. doi:https://doi.org/10.1016/j.esr.2021.100740
Kılkış, Ş., Krajačić, G., Duić, N., Rosen, M. A., & Al-Nimr, M. d. A. (2022). Effective mitigation of climate change with sustainable development of energy, water and environment systems. Energy Conversion and Management, 269, 116146. doi:https://doi.org/10.1016/j.enconman.2022.116146
Nwokolo, S. C., Singh, R., Khan, S., & Kumar, A. (2025). Chapter 12 - Final word: African nations urged to reassess rapid adoption of leapfrogging strategies proposed by advanced nations. In S. C. Nwokolo, R. Singh, S. Khan, & A. Kumar (Eds.), Technological Pathways for Africa' s Net-Zero Economy (pp. 449-472): Elsevier. doi:https://doi.org/10.1016/B978-0-443-31486-5.00012-4
Keiner, D., Gulagi, A., & Breyer, C. (2023). Energy demand estimation using a pre-processing macro-economic modelling tool for 21st century transition analyses. Energy, 272, 127199. doi:https://doi.org/10.1016/j.energy.2023.127199
Nwokolo, S. C., Singh, R., Khan, S., & Kumar, A. (2025). Chapter 8 - Key components of net zero technology. In S. C. Nwokolo, R. Singh, S. Khan, & A. Kumar (Eds.), Technological Pathways for Africa' s Net-Zero Economy (pp. 217-235): Elsevier. doi:https://doi.org/10.1016/B978-0-443-31486-5.00008-2
Salah, S. I., Eltaweel, M., & Abeykoon, C. (2022). Towards a sustainable energy future for Egypt: A systematic review of renewable energy sources, technologies, challenges, and recommendations. Cleaner Engineering and Technology, 8, 100497. doi:https://doi.org/10.1016/j.clet.2022.100497
Leonard, A., Ahsan, A., Charbonnier, F., & Hirmer, S. (2024). Renewable energy in Morocco: Assessing resource curse risks. Renewable and Sustainable Energy Reviews, 192, 114210. doi:https://doi.org/10.1016/j.rser.2023.114210
Dalla Longa, F., & van der Zwaan, B. (2024). Autarky penalty versus system cost effects for Europe of large-scale renewable energy imports from North Africa. Energy Strategy Reviews, 51, 101289. doi:https://doi.org/10.1016/j.esr.2023.101289
Nwokolo, S. C., Singh, R., Khan, S., & Kumar, A. (2025). Chapter 7 - Key players in net zero technology. In S. C. Nwokolo, R. Singh, S. Khan, & A. Kumar (Eds.), Technological Pathways for Africa' s Net-Zero Economy (pp. 193-215): Elsevier. doi:https://doi.org/10.1016/B978-0-443-31486-5.00007-0
Nwokolo, S. C., Singh, R., Khan, S., & Kumar, A. (2025). Chapter 6 - Role of digitalization and connectivity for achieving a net zero economy in Africa. In S. C. Nwokolo, R. Singh, S. Khan, & A. Kumar (Eds.), Technological Pathways for Africa' s Net-Zero Economy (pp. 175-192): Elsevier. doi:https://doi.org/10.1016/B978-0-443-31486-5.00006-9
Nwokolo, S. C., Singh, R., Khan, S., & Kumar, A. (2025). Chapter 5 - International assistance for Africa's net zero technology in Africa. In S. C. Nwokolo, R. Singh, S. Khan, & A. Kumar (Eds.), Technological Pathways for Africa' s Net-Zero Economy (pp. 159-174): Elsevier. doi:https://doi.org/10.1016/B978-0-443-31486-5.00005-7
Okpanachi, E., Ambe-Uva, T., & Fassih, A. (2022). Energy regime reconfiguration and just transitions in the Global South: Lessons for West Africa from Morocco’s comparative experience. Futures, 139, 102934. doi:https://doi.org/10.1016/j.futures.2022.102934
Kayani, U. N., Sadiq, M., Rabbani, M. R., Aysan, A. F., & Kayani, F. N. (2023). Examining the Relationship between Economic Growth, Financial Development, and Carbon Emissions: A Review of the Literature and Scientometric Analysis. International Journal of Energy Economics and Policy, 13(2), 489–499. doi:https://doi.org/10.32479/ijeep.14278
Sadiq, M., Mayyas, A., Mezher, T., & El Fadel, M. (2023). Policy and economic challenges towards scalable green-H2 transition in the middle east and north Africa region. International Journal of Hydrogen Energy, 48(85), 32995-33016. doi:https://doi.org/10.1016/j.ijhydene.2023.05.083
Nwokolo, S. C., Singh, R., Khan, S., & Kumar, A. (2025). Chapter 4 - Technological advancements in Africa. In S. C. Nwokolo, R. Singh, S. Khan, & A. Kumar (Eds.), Technological Pathways for Africa' s Net-Zero Economy (pp. 139-157): Elsevier. doi:https://doi.org/10.1016/B978-0-443-31486-5.00004-5
Nwokolo, S. C., Singh, R., Khan, S., & Kumar, A. (2025). Chapter 3 - Current state of energy in Africa. In S. C. Nwokolo, R. Singh, S. Khan, & A. Kumar (Eds.), Technological Pathways for Africa' s Net-Zero Economy (pp. 77-137): Elsevier. doi:https://doi.org/10.1016/B978-0-443-31486-5.00003-3
Nwokolo, S. C., Singh, R., Khan, S., & Kumar, A. (2025). Chapter 2 - Threats to the rapidity of sustainability transitions posed by technological changes. In S. C. Nwokolo, R. Singh, S. Khan, & A. Kumar (Eds.), Technological Pathways for Africa' s Net-Zero Economy (pp. 39-75): Elsevier. doi:https://doi.org/10.1016/B978-0-443-31486-5.00002-1
Rajabi Kouyakhi, N. (2023). Exploring the interplay among energy dependence, CO2 emissions, and renewable resource utilization in developing nations: Empirical insights from Africa and the middle east using a quantile-on-quantile approach and spatial analysis. Energy, 283, 128702. doi:https://doi.org/10.1016/j.energy.2023.128702
Chi, Y., Esily, R. R., Ibrahiem, D. M., Houssam, N., Chen, Y., Jia, X., & Zhang, X. (2023). Is North Africa region on track to energy trilemma for enhancing economic progress? The role of population growth and energy usage. Energy Strategy Reviews, 50, 101245. doi:https://doi.org/10.1016/j.esr.2023.101245
Nwokolo, S. C., Singh, R., Khan, S., & Kumar, A. (2025). Chapter 1 - State of play. In S. C. Nwokolo, R. Singh, S. Khan, & A. Kumar (Eds.), Technological Pathways for Africa' s Net-Zero Economy (pp. 1-37): Elsevier. doi:https://doi.org/10.1016/B978-0-443-31486-5.00001-X
Nwokolo, S. C., Singh, R., Khan, S., & Kumar, A. (2024). Technological Pathways for Africa' s Net-Zero Economy: Technology Solutions to Unlock Africa’s Sustainable Future. Elsevier Science. doi:https://doi.org/10.1016/C2023-0-52499-1
Ozoegwu, C. G., & Akpan, P. U.-o. (2021). Solar energy policy directions for safer and cleaner development in Nigeria. Energy policy, 150, 112141. doi:https://doi.org/10.1016/j.enpol.2021.112141
Dioha, M. O., Duan, L., Ruggles, T. H., Bellocchi, S., & Caldeira, K. (2022). Exploring the role of electric vehicles in Africa's energy transition: A Nigerian case study. iScience, 25(3). doi:https://doi.org/10.1016/j.isci.2022.103926
Tambari, I. T., Dioha, M. O., & Failler, P. (2020). Renewable energy scenarios for sustainable electricity supply in Nigeria. Energy and Climate Change, 1, 100017. doi:https://doi.org/10.1016/j.egycc.2020.100017
Beitelmal, W. H., Nwokolo, S. C., Meyer, E. L., & Ahia, C. C. (2024). Exploring Adaptation Strategies to Mitigate Climate Threats to Transportation Infrastructure in Nigeria: Lagos City, as a Case Study. Climate, 12(8), 117. doi:https://doi.org/10.3390/cli12080117
Nwokolo, S. C., Singh, R., Khan, S., & Kumar, A. (2024). Technological Pathways for Africa' s Net-Zero Economy: Technology Solutions to Unlock Africa’s Sustainable Future. Elsevier Science. doi:https://doi.org/10.1016/C2023-0-52499-1
Benatallah, M., Bailek, N., Bouchouicha, K., Sharifi, A., Abdel-Hadi, Y., Nwokolo, S. C., ... & M. El-kenawy, E. S. (2024). Solar Radiation Prediction in Adrar, Algeria: A Case Study of Hybrid Extreme Machine-Based Techniques. International Journal of Engineering Research in Africa, 68, 151-164. doi:https://doi.org/10.4028/p-VH0u4y
Bellaoui, M., Bouchouicha, K., & Oulimar, I. (2021). Estimation of daily global solar radiation based on MODIS satellite measurements: The case study of Adrar region (Algeria). Measurement, 183, 109802. doi:https://doi.org/10.1016/j.measurement.2021.109802
Nwokolo, S. C., Singh, R., Khan, S., Kumar, A., & Luthra, S. (2023). Scenarios that Could Give Rise to an African Net-Zero Energy Transition. In Africa's Path to Net-Zero: Exploring Scenarios for a Sustainable Energy Transition (pp. 263-298). Cham: Springer Nature Switzerland. doi: https://doi.org/10.1007/978-3-031-44514-9_8
Nwokolo, S. C., Singh, R., Khan, S., Kumar, A., & Luthra, S. (2023). Impacts of Climate Change in Africa. In Africa's Path to Net-Zero: Exploring Scenarios for a Sustainable Energy Transition (pp. 237-262). Cham: Springer Nature Switzerland. doi:https://doi.org/10.1007/978-3-031-44514-9_7
Ampah, J. D., Afrane, S., Li, B., Adun, H., Agyekum, E. B., Yusuf, A. A., Bamisile, O., & Liu, H. (2023). The overarching role of electric vehicles, power to hydrogen, and pumped hydro storage technologies in maximizing renewable energy integration and power generation in Sub-Saharan Africa. Journal of Energy Storage, 67, 107602. doi:https://doi.org/10.1016/j.est.2023.107602
Adeniyi, F., & Isah, A. (2023). Unlocking renewables amid rentierism: Market constraints to Nigeria's energy transition. Energy Research & Social Science, 104, 103248. doi:https://doi.org/10.1016/j.erss.2023.103248
Appiah, M., Ashraf, S., Tiwari, A. K., Gyamfi, B. A., & Onifade, S. T. (2023). Does financialization enhance renewable energy development in Sub-Saharan African countries? Energy Economics, 125, 106898. doi:https://doi.org/10.1016/j.eneco.2023.106898
Eshiemogie, S. O., Ighalo, J. O., & Banji, T. I. (2022). Knowledge, perception and awareness of renewable energy by engineering students in Nigeria: A need for the undergraduate engineering program adjustment. Cleaner Engineering and Technology, 6, 100388. doi:https://doi.org/10.1016/j.clet.2021.100388
Hirwa, J., Zolan, A., Becker, W., Flamand, T., & Newman, A. (2023). Optimizing design and dispatch of a resilient renewable energy microgrid for a South African hospital. Applied Energy, 348, 121438. doi:https://doi.org/10.1016/j.apenergy.2023.121438
Warren, P., Frazer, M., & Greenwood, N. (2023). Role of climate finance beyond renewables: hard-to-abate sectors. Energy Reports, 10, 3519-3531. doi:https://doi.org/10.1016/j.egyr.2023.10.021
Nwokolo, S. C., Singh, R., Khan, S., Kumar, A., & Luthra, S. (2023). Technological Pathways to Net-Zero Goals in Africa. In Africa's Path to Net-Zero: Exploring Scenarios for a Sustainable Energy Transition (pp. 93-210). Cham: Springer Nature Switzerland. doi:https://doi.org/10.1007/978-3-031-44514-9_5
Cole, M. J. (2023). ESG risks to global platinum supply: A case study of Mogalakwena Mine, South Africa. Resources Policy, 85, 104054. doi:https://doi.org/10.1016/j.resourpol.2023.104054
Perlaviciute, G., Steg, L., & Sovacool, B. K. (2021). A perspective on the human dimensions of a transition to net-zero energy systems. Energy and Climate Change, 2, 100042. doi:https://doi.org/10.1016/j.egycc.2021.100042
Nwokolo, S. C., Singh, R., Khan, S., Kumar, A., & Luthra, S. (2023). Remedies to the Challenges of Renewable Energy Deployment in Africa. In Africa's Path to Net-Zero: Exploring Scenarios for a Sustainable Energy Transition (pp. 59-74). Cham: Springer Nature Switzerland. doi:https://doi.org/10.1007/978-3-031-44514-9_3
DOI: http://dx.doi.org/10.17737/tre.2025.11.2.00189
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Eyime E Eyime, Ogri James Ushie
![Creative Commons License](http://i.creativecommons.org/l/by/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution 4.0 International License.
![Creative Commons License](http://i.creativecommons.org/l/by/4.0/80x15.png)
Copyright @2014-2025 Trends in Renewable Energy (ISSN: 2376-2136, online ISSN: 2376-2144)